
1

A CASE STUDY OF IV&V COST EFFECTIVENESS

Ralph D. Neal, West Virginia University
Dan McCaugherty, Intermetrics, Inc.
Tulasi Joshi, Fairmont State College

John Callahan, West Virginia University

I. Abstract

This paper looks at the independent verification and validation (IV&V) of NASA’s Space Shuttle Day of Launch I-Load
Update (DoLILU) project. IV&V is defined. The system’s development life cycle is explained. Data collection and analysis
are described. DoLILU Issue Tracking Reports (DITRs) authored by IV&V personnel are analyzed to determine the
effectiveness of IV&V in finding errors before the code, testing, and integration phase of the software development life cycle.
 The study’s findings are reported along with the limitations of the study and planned future research.1

Keywords: IV&V, software, verification, validation, cost, schedule, quality

II. Introduction

Management in government, private industries, and academia have been concerned about software (s\w) development that
is feasible, within cost estimates, and on schedule with a high quality product that fulfills the requirements. These concerns
are well founded. A study of 8380 application development efforts performed by the Standish Group [1994] found that cost
overruns average about 189% of the original cost estimate and 31% of development efforts were ultimately canceled. Of
the developments that were completed, only 16% delivered the initially specified functions while the remaining 53%
delivered on the average about 61% of the initially specified functions. The leading causes for these development failures
and cost overruns occurred early in the life cycle and included incomplete, unclear, and unstable requirements and
specifications and lack of user input. Independent verification and validation (IV&V) is designed to mitigate these types of
development risks. The Jet Propulsion Laboratory (JPL) reports that quality assurance (QA) and IV&V together assure the
quality, reliability and maintainability of s\w products. [JPL, 1985].

IV&V is an important part of the assurance to which JPL alludes. The JPL report states that studies have shown that
expenditure on software QA activities for a typical s\w project can add 5% to 50% to the cost of development [JPL, 1985],
while other studies show that IV&V can add 10% to 15% to the cost of development. However, since maintenance costs are
40% to 80% of the life cycle costs, depending on which study you believe, the cost of the IV&V effort can be offset or
exceeded by the savings and benefits that result from its use.

Of the techniques used to assure quality, IV&V often incurs more expense in the early life cycle phases. However, this initial
expense pays dividends in the form of more problems being found earlier in the life cycle when they are cheaper to fix. Cost
savings figures vary but Boehm [1981] and others have shown that the costs to correct an error in later life cycle phases may
increase by a factor of four to ten in each subsequent phase. If IV&V can be shown to uncover errors earlier in the
development life cycle than they would have otherwise been uncovered, the cost to correct them may be only one-fourth to
one-tenth the cost to correct them without IV&V.

1 Funded in part by NASA Cooperative Agreement NCCW-0040

2

III. Independent Verification and Validation

Independent verification and validation (IV&V) consists of the analysis and testing of a software developer’s requirements,
design, and code by an independent agent. The agent inspects the software development process and products to ensure
compliance with the requirements of the system and to promote product quality. The independent agent normally reports
to the contracting agency directly rather than through the organization doing the development [NASA, 1995; Makowsky,
1994].

3

IV&V is conducted parallel to, but separate from, the system software development activities. The objective is to ensure
that the software development project will satisfy requirements, design, implementation, operations, and maintenance
objectives. The primary goal is to minimize the inherent risk of software systems development and maximize confidence
in the result. The effectiveness of IV&V is lessened when IV&V is out of phase with the development process. This result
can be minimized when the IV&V effort is an integral part of software development [Makowsky, 1994].

IV. The Software Life cycle

The classification of phases of the software development life cycle (SDLC) varies from one software development
organization to another. For the purpose of this study, the (SDLC) has been divided into six phases that are generally
consistent with: 1) the framework of Intermetrics, Inc. for its IV&V functional plan; 2) the choice of the 1985 JPL study on
cost effectiveness of IV&V [JPL, 1985]; and 3) the waterfall model of Boehm [Boehm, 1981]. The six phases are defined
as follows:

Phase 1: Requirements (Reqt)
Phase 2: Preliminary Design (PD)
Phase 3: Detailed Design (DD)
Phase 4: Implementation (coding and unit testing) (Imp)
Phase 5: Integration and System Test (IST)
Phase 6: Operation and Maintenance (Ops)

In this study, each computer software configuration item (CSCI) was developed on its own life cycle, i.e., within a larger
system life cycle. The life cycles employed modeled the waterfall method close enough to be fitted within the above SDLC
framework. It can be noted here that IV&V activities normally stop at the end of IST (phase 5).

V. Types of IV&V Activities

IV&V consists of the assessment activities: reviewing, analyzing, testing, and monitoring. Formal reviews and audits
indicate milestone achievement sufficient to warrant progressing into the next phase of the development process. They serve
as the basis for verification and validation [Makowsky, 1994].

While the IV&V activities vary along many dimensions from project to project and from contractor to contractor, the
following text and graphic (Figure 1) represent a generic IV&V operation and IV&V as it was carried out for the DoLILU
project. The open ended bars represent that the starting time for IV&V activities is not set; the closed end of the bars
represent that the ending time for IV&V activities is set and coincides with the end of a SDLC phase. Requirement
documents are examined to determine the degree of compliance by the software systems developer to the systems
requirements. IV&V analysis of requirements normally starts while the development team is conducting the software
requirements analysis (Phase 1) and finishes along with the software detailed design (Phase 3) and the critical design reviews
that immediately follow the detailed design [Makowsky, 1994]. Design documents are evaluated to determine the degree
of compliance with the system requirements. IV&V analysis of design normally starts during the preliminary design (Phase
2) and concludes with implementation (Phase 4) [Makowsky, 1994]. Source code is examined to determine the degree of
compliance with the requirements and design. Source code examination normally starts during coding and unit testing (Phase
4) and concludes at the end of integration and system testing (Phase 5) [Makowsky, 1994]. As mentioned earlier, IV&V

Phase: 1 Reqt 2 PD 3 DD 4 Imp 5 IST 6 Ops
 Requirements IV&V |
 Design IV&V |
 Test Analysis |
 Source Code IV&V |

Figure 1. The SDLC phases depicted on a timeline:

4

is normally not carried out during Ops (Phase 6).

VI. Justification of IV&V

NASA has used IV&V for software projects that require high reliability, such as in the case of the Shuttle Program and the
Space Station Program. These programs are expensive and have a high degree of risk. In programs such as these where the
potential social or financial loss resulting from an operational failure is so high, the cost of IV&V is considered a worthwhile
investment because of the increased confidence, that results. Finding an error after the code has been put into operation is
unacceptable when life may hang in the balance.

Aside from the justification for IV&V from an operational perspective, there are a number of studies and opinions that
support the performance of IV&V in the successful completion of software development, e.g., SED-SES-IES-001, 1994;
Makowsky, 1992; ESA PSS-05-10, February 1994; SMAP-GB-A201, September 1989; and NASA-GB-001-95, April 1995.
Some of the benefits that have been pointed out in the literature are that IV&V:

supports early auditing of configuration management, especially for evolutionary development;
creates better documentation at all levels, i.e., requirements, design, code, and test;
reduces risk;
increases confidence in the software;
causes latent errors to become evident;
creates a better structure for management review;
reduces schedule slippage;
in general helps decision-makers make better decisions;
motivates the prime contractor;
helps the developer decide when testing has been completed;
and appears to be cost-effective.

The economic benefit that comes from IV&V is realized when errors are found earlier than they might otherwise have been
found. Boehm estimated that the cost to fix an error for large projects increases 5 times if detected at phase 2, 10 times at
phase 3, 20 times at phase 4, 40 times at phase 5 and 100 times at phase 6 relative to the cost to fix the error at phase 1
[Boehm, 1981; p.40]. Wolverton [1980] found the same geometric trend in the increase of costs to fix an error from one
phase of the software life cycle to the next. Assuming unit cost at the requirements phase, Wolverton found that it cost 2.5
times as much to correct an error when detected at the design phase, 5 times as much at the code and unit test phase, and 36
times as much at the test and integration phase.

VII. OBJECTIVE

Intermetrics, Inc. was the NASA contractor for the performance of IV&V during the requirements definition, design,
implementation, test, and acceptance life cycle phases of the Space Shuttle day of launch I-load update (DoLILU) phase I.
 DoLILU Issue Tracking Reports (DITRs) act as the nuts and bolts for the success of IV&V. DITRs facilitate the formal
documentation and tracking of issues and errors. These issues may be specific errors, potential errors, general concerns, or
observations that require resolution or clarification. The DITRs describe the issue, the recommended corrective action and
the impact of not resolving the issue. A formal response to the recommendation is required by the organization responsible
for correcting the problem. The DITRs provide a field for this response. NASA, IV&V, the developer, and quality
assurance organizations review the response provided by the developer at assemblies of the DoLILU Working Group. The
transmittal of DITRs to the responsible organization enables the timely resolution of issues and errors. DITRs identifying
issues pertinent to maintaining the desired level of system safety are tracked and identified as such by IV&V and remain open
until it is determined that an appropriate corrective action has been implemented [Intermetrics, 1993].

Figure 2 (reproduced from [Ramamoorthy, et al., 1984]) shows the percentage of errors introduced contrasted with the
percentage of errors found by life cycle phase for the typical software development life cycle. The four columns, in each
set, represent the phases of a four-phase life cycle model. These four phases correspond to the six phases of the model used
in the DoLILU project thus: DoLILU phases two and three are combined into column two; DoLILU phase four is represented

5

Figure 2. [Ramamoorthy, et al., 1984]

by column three, DoLILU phase five is
represented by column four, and DoLILU
phase six is not represented. The DoLILU
project did not track errors into phase six.
Thus, the six phases of DoLILU are
telescoped into four phases with the loss only
of detail. The set of columns on the left
represent the percentage of errors introduced
into the software during each phase of the life
cycle. The set of columns on the right
represent the percentage of errors observed
during each phase of the life cycle. So,
thought the detail is not the same in the study
by Ramamoorthy, et al., the trends of error
introduction and error observation are clear
and can be fit to the DoLILU life cycle.

In general, errors are introduced in the earlier
stages of the development life cycle and are
found in the later stages of the development
life cycle. A number of studies, as discussed
earlier, have supported the notion that the application of IV&V is cost effective. Is this true in the case of DoLILU? These
studies suggest that IV&V will not only pay for itself, but will save money, especially if its application detects errors at
earlier stages of the software life cycle. The earlier in the SDLC that errors are observed, the cheaper they may be corrected
[Boehm, 1981]. The objective of this study is to verify the cost effectiveness of IV&V as applied to DoLILU through a case
study of Intermetrics’ DoLILU Issue Tracking Reports (DITRs).

VIII. HYPOTHESIS

The IV&V for DoLILU reduced overall development life cycle cost by exposing errors as early as possible and by reducing
the probability of latent errors.

IX. DATA COLLECTION

There were 109 DITRs in total. Nine of them were excluded from this study. Seven of them were not relevant to the
software life cycle, and two of them were withdrawn because the issues involved were invalid. The Intermetrics DoLILU
IV&V manager, now located at the NASA Software Systems and Technology Facility (NASA’s IV&V facility) in Fairmont,
West Virginia, prepared a large number of the DITRs, and identified the phases of the life cycle to which each DITR was
applicable. To make this study compatible with studies mentioned earlier the software life cycle was divided into the six
phases as previously outlined. Each error from each DITR was recorded separately. From the 100 DITRs used for this
study, 695 errors were identified. Each error was identified with a DoLILU CSCI, and the phase in the life cycle where the
error was observed. For example, a requirements related error identified during the code phase is assigned to phase 4 and
not to phase 1.

X. ANALYSIS

There were nine DoLILU CSCIs associated with the 695 errors. These CSCIs were given the names DIBS, DIVDT,
DOLSEND, DTS, ILUV, LTQS, RSOLNK, SVDS and SYSTEM. LTQS was associated with the highest number of errors
accounting for almost 50% of the errors. DIVDT accounted for over 15%. Three CSCIs (ILUV, DTS, and DIBS) accounted
for 7.6 TO 8.5% each, and the remaining four CSCIs accounted for less than 4% each (see Table 1). Out of the 695 errors
detected, about 15% of them were found in phase 1, 6% in phase 2, 20% in phase 3, 3% in phase 5, and over half (57%) were
found in phase 4.

6

Components fall into 2 distinct ranges
 0-35 & 70-100

0.00 0.00

0.15

0.34

0.70

0.84

0.96
0.98 1.00

0%

20%

40%

60%

80%

100%

DOLSEND ILUV DIVDT LTQS DTS SVDS SYSTEM DIBS RSOLNK

Figure 3. Components by name

%
 o

f
er

ro
rs

 f
o

u
n

d
 in

 o
r

b
ef

o
re

 p
h

as
e

3
When the nine CSCIs are plotted based on the percentage of errors found in or before phase 3, a bimodal distribution results
(see Figure 3). Notice that the first band (0 to 20%) contains three CSCIs, the second band (21 to 40%) contains one CSCI,
the fourth band (61 to 80%) contains one CSCI and the fifth band (81 to 100%) contains four CSCIs. There is a large
unexplained gap in the middle. No CSCI shows an even distribution of observed errors across the beginning and ending
phases of the SDLC. When a histogram is made of this data the bimodal distribution is even more evident (see figure 4).

Table 1 Phase 1 2 3 4 5 * TOTAL PERCENT

DIBS 13 1 44 1 0 59 8.49

DIVDT 12S 1S 3S 78 11 105 15.11

DOLSEND N N N 20 1 21 3.02

DTS 1 36 0 16 0 53 7.63

ILUV N N N 56 0 56 8.06

LTQS 45S 1N 71S 220 6 343 49.35

RSOLNK 4 0 8 0 0 12 1.73

SVDS 15 0 1 3 0 19 2.73

SYSTEM 17 0 9 1 0 27 3.88

TOTAL 107 39 136 395 18 695

PERCENT 15.40 5.61 19.57 56.83 2.59

* phase 6 error data not available
Full IV&V, i.e., all life cycle products were available for review (default).
Some IV&V, i.e., some life cycle products were available for review.
No IV&V, i.e., no life cycle products were available for review.

These results beg the question as to why IV&V was less effective for the four CSCIs in the 0-20% and 21-40% bands.
Further examination of the specific
development techniques indicates that,
prior to the implementation phase, the
four CSCIs in the lower percentage
bands did not have the full compliment
of standard SDLC products on which to
perform IV&V, i.e. they did not follow
the SDLC model to which this study is
applied. We have, therefore, divided
the CSCI developments into two groups,
those that followed the SDLC, Group 1,
and those that did not, Group 2. Table
2 provides the distribution of errors
across the SDLC for these groups both
in terms of the number of errors found
in each phase and the percentage of
errors found in each phase relativeto the
total of errors from all phases. These
data indicate that early IV&V leads to

7

early detection of errors and that the lack of early IV&V leads to more errors being found by IV&V at later, more expensive,
phases of the development life cycle. The errors reported here do not include the errors found and eliminated by the
developer, i.e., the errors reported here are only those found by IV&V. If IV&V was not employed, and therefore not finding
errors, the number of errors found by the developer in phase
4 or later would be compounded by an amount proportional
to the number of errors found by IV&V in the first three
phases. If IV&V takes place in parallel with development,
these errors are found earlier when they are cheaper to fix.
 If IV&V is not active until later in the life cycle, the errors
that could have been discovered earlier are still there to be
discovered and corrected later at a higher cost.

Another way to view this data is to show the percentage of
errors found in each phase for groups 1 and 2 relative to the
percentages found by development efforts in general
(according to figure 2). These percentages are plotted in
figure 5. In this figure there is a substantial increase in the
percentage of errors found by an IV&V agent in the
requirements and design phases relative to normal
development trends. This is a testament to how IV&V, when
applied to developments following sound software engineering practices, results in the identification of errors early in the
development rather than later. Additionally, both group 1 and 2 demonstrate a tremendous reduction in errors found during
the integration and system test phase, Phase 5. Very few errors are found during phase 5 even if IV&V doesn’t start in
earnest until phase 4.

Table 2 PHASE1 PHASE2 PHASE3 PHASE4 PHASE5 TOTAL

Group 1 count 50 37 62 21 0 170

% of group 29.41 21.76 36.47 12.35 0.00

Group 2 count 57 2 74 374 18 525

% of group 10.86 0.38 14.10 71.24 3.43

XI. CONCLUSION

Of special interest is the small number of errors found during phase 5 relative to typical error trends in general. This
indicates that, given a chance to review the work, IV&V was effective in greatly reducing latent errors that are very
expensive to correct.

From the data gathered on DoLILU, it seems that IV&V is most cost effective if it is performed from the very beginning of
the software life cycle. Although it is less cost effective if it is performed only at later phases (especially after phase 3)
IV&V is effective in reducing costly latent errors when applied during the code phase. Therefore, the hypothesis that “The
IV&V for DoLILU reduced life-cycle cost by exposing errors as early as possible and by reducing the probability of latent
errors.” was accepted.

This study, however, has many limitations. The relative severity of the errors has not been discussed. Therefore, although
it is reasonable to assume that the errors found by IV&V range from the insignificant to the critical and have the same
distribution as all of the errors in the system, it would be helpful to be able to rank the errors by severity. It was not possible
to determine actual costs either in a dollar figure or man hour/months because data were not available at the time of the study.
 Therefore, the savings from finding errors earlier in the life cycle are based on previous studies instead of being based on

0

1

2

3

4

N
um

be
r

of
 C

om
po

ne
nt

s

0-20 21-40 41-60 61-80 81-100

Figure 4. % errors found in phase 3 or earlier

Bimodal Model

8

empirical data from this study. We have no data
on subsequent requirement changes or later
review processes. The complexity and size of the
CSCIs were not considered.

This was a first attempt to learn about the cost
effectiveness of IV&V in the NASA setting.
More studies are needed wherein the concerns
mentioned above are controlled for. Studies have
to be designed and implemented at the start of
projects instead of relying on the data collected
incidentally during a project. Typically IV&V is
applied because of the potential catastrophic
consequences of a software failure. Future
studies are needed to further examine and
quantify the cost effectiveness of IV&V to
determine appropriate applications of IV&V for
software engineering in general.

Bibliography

Boehm, Barry W., Software Engineering Economics, Prentice Hall, Inc., Englewood Cliffs, NJ, 1981.
Brooks, Fred, The Mythical Man-Month: Essays on Software Engineering, Addison-Wesley Publishing, Reading,

MA,1975.
Farr, William H., A Survey of Software Reliability Modeling and Estimation, NSWC TR 82-171, September 1983.
Intermetrics, Inc., Independent Verification and Validation Plan for the Day of Launch Iloads Update System Phase II,

1993.
JPL, Cost-Effectiveness of Software Independent Verification and Validation, NASA RTOP #323-51-72, 1985.
Makowsky, Lawrence C., A Guide to Independent Verification and Validation of Computer Software, U.S. Army

Belvoir RD&E Center, 1994.
NASA-RPT-004-95, Profile of Software at the National Aeronautics and Space Command, March 1995.
Putnum, Lawrence H., and Ware Myres, Measures for Excellence, Yourdon Press, Englewood Cliffs, NJ, 1992.
Ramamoorthy, et al., Software Engineering, IEEE Computer, October, 1984.
RTOP#323-51-72-NASA, Cost-Effectiveness of Software Independent Verification and Validation, October 1985.
SED-SES-IES-001, Software Engineering Directorate: Software Engineering Evaluation System (SEES), August 1994.
Shooman, M., Software Reliability: Measurement and Models, Proceedings of the 1975 Annual Reliability and

Maintainability Symposium, 1975.
Standish Group, The, Charting the Seas of Information Technology, A Special COMPASS Report, The Standish Group

International, Inc., Dennis, MA, 1994.
Wolverton, R.W., Airborne Systems Software Acquisition Engineering Guidebook: Software Cost Analysis and

Estimating, U.S. Air Force ASD/EN, Wright-Patterson AFB, OH, 1980.

 20%

 40%

 60%

 80%

Phase: 1 2&3 4 5
Figure 5. Lifecycle Phases

Full IV&V

Partial IV&V

Ramamoorthy, et al. study

IV&V vs Partial IV&V
percent of errors found by phase

9

A CASE STUDY OF IV&V COST EFFECTIVENESS

Ralph D. Neal, West Virginia University
Dan McCaugherty, Intermetrics, Inc.
Tulasi Joshi, Fairmont State College
John Callahan, West Virginia University

I. Abstract

This paper looks at the independent verification and validation (IV&V) of NASA’s Space Shuttle Day of
Launch I-Load Update (DoLILU) project. IV&V is defined. The system’s development life cycle is
explained. Data collection and analysis are described. DoLILU Issue Tracking Reports (DITRs)
authored by IV&V personnel are analyzed to determine the effectiveness of IV&V in finding errors
before the code, testing, and integration phase of the software development life cycle. The study’s’s
findings are reported along with the limitations of the study and planned future research.

Keywords: IV&V, software, verification, validation, cost, schedule, quality

